Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6904, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519574

RESUMO

Early life exposure to environmental pollutants such as arsenic (As) can increase the risk of cancers in the offspring. In an earlier study, we showed that only prenatal As exposure significantly increases epidermal stem cell proliferation and accelerates skin tumorigenesis in BALB/c mouse offspring. In the present work, we have examined the role of As-conditioned dermal fibroblasts (DFs) in creating pro-tumorigenic niches for Keratinocyte stem cells (KSCs) in the offspring. DFs isolated from prenatally exposed animals showed increased levels of activation markers (α-SMA, Fibronectin, Collagen IV), induction of ten-eleven translocation methylcytosine dioxygenase 1(TET1), and secreted high levels of niche modifying IL-6. This led to enhanced proliferation, migration, and survival of KSCs. Increased IL-6 production in As-conditioned fibroblast was driven through TET1 mediated 5-mC to 5-hmC conversion at -698/-526 and -856/-679 region on its promoter. IL-6 further acted through downstream activation of JAK2-STAT3 signaling, promoting epithelial-to-mesenchymal transition (EMT) in KSCs. Inhibition of pSTAT3 induced by IL-6 reduced the EMT process in KSCs resulting in a significant decrease in their proliferation, migration, and colony formation. Our results indicate that IL-6 produced by prenatally conditioned fibroblasts plays a major role in regulating the KSC niche and promoting skin tumor development in As-exposed offspring.


Assuntos
Arsênio , Interleucina-6 , Camundongos , Feminino , Gravidez , Animais , Queratinócitos/metabolismo , Transdução de Sinais/fisiologia , Fibroblastos/metabolismo , Proteínas de Ligação a DNA , Proteínas Proto-Oncogênicas/metabolismo
2.
Mol Carcinog ; 63(5): 817-833, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38299738

RESUMO

Chronic exposure to arsenic (As) promotes skin carcinogenesis in humans and potentially disturbs resident stem cell dynamics, particularly during maternal and early life exposure. In the present study, we demonstrate how only prenatal arsenic exposure disturbs keratinocyte stem cell (KSC) conditioning using a BALB/c mice model. Prenatal As exposure alters the normal stemness (CD34, KRT5), differentiation (Involucrin), and proliferation (PCNA) program in skin of offspring with progression of age as observed at 2, 10, and 18 weeks. Primary KSCs isolated from exposed animal at Day-2 showed increased survival (Bax:Bcl-xL, TUNEL assay), proliferation (BrdU), and differentiation (KRT5, Involucrin) potential through the activation of pro-carcinogenic IGF2R-MAPK cascade (IGF2R-G(α)q-MEK1-ERK1/2). This was associated with reduced enrichment of histone H3K27me3 and its methylase, EZH2 along with increased binding of demethylase, KDM6A at Igf2r promoter. Altered KSCs conditioning through disturbed Igf2r imprint contributed to impaired proliferation and differentiation and an aggravated tumor response in offspring.


Assuntos
Arsênio , Queratinócitos , Neoplasias Cutâneas , Animais , Feminino , Camundongos , Gravidez , Arsênio/toxicidade , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Carcinogênese/patologia , Queratinócitos/metabolismo , Queratinócitos/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células-Tronco/metabolismo , Células-Tronco/patologia , Receptor IGF Tipo 2/efeitos dos fármacos , Receptor IGF Tipo 2/metabolismo , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
3.
Chemosphere ; 352: 141493, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38368966

RESUMO

Developmental exposure to environmental pollutants has been shown to promote adverse health outcomes in offspring. Exposure to heavy metals such as arsenic which also has endocrine-disrupting activity is being increasingly linked with cancers, diabetes, and lately with Metabolic Syndrome (MetS). In this work, we have assessed the effects of preconceptional plus gestational arsenic exposure on the developmental programming of MetS in offspring. In our study, only gestational arsenic exposure led to reduced birth weight, followed by catch-up growth, adiposity, elevated serum triglycerides levels, and hyperglycemia in male offspring. Significant adipocyte dysfunction was observed in offspring with increased hypertrophy, insulin resistance, and chronic inflammation in epididymal white adipose tissue. Adipose tissue regulates the metabolic health of individuals and its dysfunction resulted in elevated serum levels of metabolism-regulating adipokines (Leptin, Resistin) and pro-inflammatory cytokines (PAI-1, TNFα). The progenitor adipose-derived stem cells (AdSCs) from exposed progeny had increased proliferation and adipogenic potential with excess lipid accumulation. We also found increased activation of Akt, ERK1/2 & p38 MAPK molecules in arsenic-exposed AdSCs along with increased levels of phospho-Insulin-like growth factor-1 receptor (p-IGF1R) and its upstream activator Insulin-like growth factor-2 (IGF2). Overexpression of Igf2 was found to be due to arsenic-mediated DNA hypermethylation at the imprinting control region (ICR) located -2kb to -4.4 kb upstream of the H19 gene which caused a reduction in the conserved zinc finger protein (CTCF) occupancy. This further led to persistent activation of the MAPK signaling cascade and enhanced adipogenesis leading to the early onset of MetS in the offspring.


Assuntos
Arsênio , Síndrome Metabólica , Camundongos , Animais , Masculino , Adipogenia , Arsênio/toxicidade , Obesidade , Tecido Adiposo
4.
Front Microbiol ; 14: 1147505, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37840722

RESUMO

Introduction: Approximately 200 million people worldwide are affected by arsenic toxicity emanating from the consumption of drinking water containing inorganic arsenic above the prescribed maximum contaminant level. The current investigation deals with the role of prenatal arsenic exposure in modulating the gut microbial community and functional pathways of the host. Method: 16S rRNA-based next-generation sequencing was carried out to understand the effects of in utero 0.04 mg/kg (LD) and 0.4 mg/kg (HD) of arsenic exposure. This was carried out from gestational day 15 (GD-15) until the birth of pups to understand the alterations in bacterial diversity. Results: The study focused on gestational exposure to arsenic and the altered gut microbial community at phyla and genus levels, along with diversity indices. A significant decrease in firmicutes was observed in the gut microbiome of mice treated with arsenic. Functional analysis revealed that a shift in genes involved in crucial pathways such as insulin signaling and non-alcoholic fatty liver disease pathways may lead to metabolic diseases in the host. Discussion: The present investigation may hypothesize that in utero arsenic exposure can perturb the gut bacterial composition significantly as well as the functional pathways of the gestationally treated pups. This research paves the way to further investigate the probable mechanistic insights in the field of maternal exposure environments, which may play a key role in epigenetic modulations in developing various disease endpoints in the progeny.

5.
Toxicol Appl Pharmacol ; 443: 116004, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35364107

RESUMO

Prenatal and postnatal life stress could be a potent programmer of phenotype or disease state of an individual in the later life. Prenatal arsenic exposure has been shown to promote developmental defects, low birth weight, immunotoxicity and is associated with various cancers including skin cancer in adulthood. To investigate the association between prenatal arsenic exposure and adult life skin carcinogenesis, we used a two-stage cutaneous carcinogenesis model in which BALB/c mice were prenatally exposed to 0.04 mg/kg and 0.4 mg/kg arsenic (As). Exposure to arsenic was sufficient to shorten the tumor latency period and promote epidermal hyperplasia in the offspring upon challenge with dimethylbenz[a]/12-O-tetradecanoylphorbol-13-acetate (DMBA/TPA). The levels of inflammatory and tissue microenvironment remodeling factors such as IL-1α and TNF-α were persistently elevated in the skin, and their inhibition through diacerein led to a significant decrease in the tumor response, suggesting their role in tumorigenesis. While there was overexpression of multiple epigenetic regulators at tissue level, we found decreased enrichment of Polycomb repressive complex 2 (PRC2) member EZH2 and H3K27me3 mark at the upstream of the affected inflammatory genes. The higher expression of the inflammatory genes suggests the gene specific selective nature of EZH2 repression which was also associated with increased binding of the activator KDM6a (demethylase). Further, arsenic conditioned basal keratinocytes cells (BKCs) showed increased migration and proliferation along with higher expression of tumor associated cytokines. Inhibition of EZH2 in the BKCs lead to their further upregulation suggesting that BKCs might be the potential cell type for the interaction of EZH2 and inflammatory cytokines. The present study provides new evidence for the role of PRC2 group regulators in inflammatory conditioning and development of skin cancer in offspring prenatally exposed to arsenic.


Assuntos
Arsênio , Efeitos Tardios da Exposição Pré-Natal , Neoplasias Cutâneas , Adulto , Animais , Arsênio/toxicidade , Carcinogênese/induzido quimicamente , Carcinogênese/genética , Citocinas , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Feminino , Humanos , Inflamação/induzido quimicamente , Camundongos , Camundongos Endogâmicos BALB C , Complexo Repressor Polycomb 2/metabolismo , Gravidez , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...